Lifted Discriminative Learning of Probabilistic Logic Programs

نویسندگان

  • Arnaud Nguembang Fadja
  • Fabrizio Riguzzi
چکیده

Probabilistic logic programming (PLP) provides a powerful tool for reasoning with uncertain relational models. However, learning probabilistic logic programs is expensive due to the high cost of inference. Among the proposals to overcome this problem, one of the most promising is lifted inference. In this paper we consider PLP models that are amenable to lifted inference and present an algorithm for performing parameter and structure learning of these models from positive and negative examples. We discuss parameter learning with EM and LBFGS and structure learning with LIFTCOVER, an algorithm similar to SLIPCOVER. The results of the comparison of LIFTCOVER with SLIPCOVER on 12 datasets show that it can achieve solutions of similar or better quality in a fraction of the time.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lifted Variable Elimination for Probabilistic Logic Programming

Lifted inference has been proposed for various probabilistic logical frameworks in order to compute the probability of queries in a time that depends on the size of the domains of the random variables rather than the number of instances. Even if various authors have underlined its importance for probabilistic logic programming (PLP), lifted inference has been applied up to now only to relationa...

متن کامل

Lifted Inference for Probabilistic Programming

A probabilistic program often gives rise to a complicated underlying probabilistic model. Performing inference in such a model is challenging. One solution to this problem is lifted inference which improves tractability by exploiting symmetries in the underlying model. Our group is pursuing a lifted approach to inference for probabilistic logic programs.

متن کامل

Inference in Probabilistic Logic Programs Using Lifted Explanations

In this paper, we consider the problem of lifted inference in the context of Prism-like probabilistic logic programming languages. Traditional inference in such languages involves the construction of an explanation graph for the query that treats each instance of a random variable separately. For many programs and queries, we observe that explanations can be summarized into substantially more c...

متن کامل

Lifted Inference for Probabilistic Logic Programs

First-order model counting emerged recently as a novel reasoning task, at the core of efficient algorithms for probabilistic logics such as MLNs. For certain subsets of first-order logic, lifted model counters were shown to run in time polynomial in the number of objects in the domain of discourse, where propositional model counters require exponential time. However, these guarantees apply only...

متن کامل

Invited Talk: Learning probability by comparison

Learning probability by probabilistic modeling is a major task in statistical machine learning and it has traditionally been supported by maximum likelihood estimation applied to generative models or by a local maximizer applied to discriminative models. In this talk, we introduce a third approach, an innovative one that learns probability by comparing probabilistic events. In our approach, we ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017